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a  b  s  t  r  a  c  t

The  analytical  solutions  of  the fundamental  equation  of  the  multilinear  gradient  elution  are  derived  in
two  cases,  when  the  dependence  of  the  logarithm  of  the  solute  retention  (ln  k) upon  the  volume  fraction  of
organic  modifier  (ϕ) is  a three-parameter  logarithmic  expression,  and  when  a  simple  linear  relationship
between  ln k  and  ln ϕ  is  adopted.  The  derived  theoretical  expressions  for  retention  times  under  multi-
eywords:
eversed-phase liquid chromatography
ultilinear gradient optimization

linear  gradient  conditions  are  embodied  to  simple  algorithms  for  fitting  gradient  data  and  especially  for
resolution  optimization.  Their  performance  was  examined  by  using  a  mixture  of 16  model  compounds
chosen  among  purines,  pyrimidine  and  nucleosides  in  eluting  systems  modified  by  acetonitrile.  It was
found  that  the  accuracy  of  the  predicted  gradient  retention  times  is  very  satisfactory  even  if  the  simple
logarithmic  expression  for the  retention  behavior  of  solutes,  i.e.  the  linear  dependence  of  ln  k  upon  ln ϕ,
is used.
. Introduction

In gradient elution chromatography a computer aided optimiza-
ion procedure involves the solution of the fundamental equation
f gradient elution with respect to the retention time, tR, which
n turn requires the dependence of the retention factor, k, upon
he mobile phase composition. Up to now, in reversed-phase liquid
hromatography (RP-LC), an analytical solution of the fundamental
quation of gradient elution with respect to tR, is available when ln k
aries linearly with the volume fraction ϕ of an organic modifier in
he hydro-organic eluents, and ϕ is programmed to vary linearly
ith the time. The combination of linear programmed gradient
rofile with a linear dependence of ln k upon ϕ is called linear sol-
ent strength gradient and constitutes the base of DryLab, the most
idespread package for gradient elution prediction and optimiza-

ion to date [1,2]. However, due to the importance of using proper
ptimization algorithms for the determination of the optimum gra-
ient profile at a certain separation, several other approaches have
lready been developed [3–9].

In a recent review article [10] we have shown that the logarith-

ic  retention model

n k = ln k0 − r ln(1 + bϕ)  (1)
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exhibits a good fitting performance which is comparable to that of
the most popular retention models, the quadratic

ln k = ln k0 + aϕ + bϕ2 (2)

and the rational one

ln k = ln k0 − aϕ

1 + b
(3)

In these equations k0, r, a and b are adjustable parameters.
The aim of the present study is to develop analytical solutions

of the fundamental equation of gradient elution when the reten-
tion model expressed by Eq. (1) as well as by limiting expressions
of Eq. (1) and to use the derived expressions for tR in algorithms
for fitting gradient data and for multilinear gradient elution opti-
mization. The effectiveness of the above optimization procedure
is tested in the separation of 16 model compounds chosen among
purine and pyrimidine bases as well as nucleosides due to their
biomedical and pharmaceutical interest [11–15].

2. Theoretical section

The fundamental equation of gradient elution when the volume
fraction ϕ of an organic modifier in the hydro-organic eluents varies

with the time t is [6,9,16–19]∫ tR−t0

0

dt

t0k
= 1 (4)
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Fig. 1. Schematic multilinear gradient profile.

here tR is the solute gradient elution time and t0 is the col-
mn  hold-up time. Eq. (4) has an analytical solution with respect
o the analyte retention time tR when a linear retention model,
uch as

n k = ln k0 − aϕ (5)

s adopted. The solution of Eq. (4) when the retention model
s the linear one has been presented and discussed by Snyder
nd his colleague [1,2] and it constitutes the bases of the Dry-
ab, which is the most widespread package for prediction and
ptimization.

It can be easily shown that the combination of the logarithmic
odel of Eq. (1) with the fundamental Eq. (4) results also in an

nalytical solution with respect to tR. In addition, analytical solution
s obtained from the model

n k = ln k0 − a ln ϕ (6)

hich is a limiting expression of Eq. (1) when bϕ � 1. Note that,
he linear model, Eq. (5),  is also a limiting case of Eq. (1) when
bϕ| � 1. In this case ln(1 + bϕ) is expanded in a Taylor series and
ince |bϕ| � 1, we obtain ln(1 + bϕ) ≈ bϕ, which in combination with
q. (1) yields Eq. (5).

Here we examine the solutions of the fundamental equation of
radient elution when the retention model is expressed by Eq. (1)
r Eq. (6).  It is evident that the solution of Eq. (4) when the reten-
ion model is Eq. (1) is expected to cover a much wider range of
olutes than the solution of this equation with the very limiting
inear model of Eq. (5).  At this point we should clarify that ana-
ytical solutions of the fundamental equation (4) are needed only
n optimization algorithms to suppress the computational time as

uch as possible.
For generality we examine the analytical solutions of Eq.

4) under the multilinear gradient profile depicted in Fig. 1.
his profile is mathematically described by the following
xpression

 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ1 = ϕin t < t1
ϕ1 + �2(t − t1) t1 < t < t2
ϕ2 + �3(t − t2) t2 < t < t3
. . .
ϕn−1 + �n(t − tn−1) tn−1 < t < tn

ϕn = ϕmax t > tn

(7)

here �i is the slope of the ϕ vs. t at the i-th segment. In the treat-
ent presented in this paper we assume that all slopes are different

rom zero, since a zero slope can be approximated in practice by an

nfinitesimally small slope. Note that in the times appeared in Eq.
7) we should add the dwell time tD of the chromatographic sys-
em, i.e. the time needed for a certain change in the mixer to reach
he inlet of the chromatographic column. Based on the multi-linear
 1218 (2011) 5658– 5663 5659

profile of Eq. (7) and provided that an analyte is eluted in the range
tp−1 < t < tp, where p ≤ n, Eq. (4) may  be written as∫ tR−t0

0

dt

t0k
=

∫ t1+tD

0

dt

t0k
+

∫ t2+tD

t1+tD

dt

t0k
+ · · · +

∫ tp−1+tD

tp−2+tD

dt

t0k

+
∫ tR−t0

tp−1+tD

dt

t0k
=I1+I2+· · · + Ip−1 +

∫ tR−t0

tp−1+tD

dt

t0k
=1

(8)

where parameters I1, I2, . . . represent the corresponding integrals
in the above expression.

2.1. Logarithmic retention model expressed by Eq. (1)

When the retention model may  be expressed by Eq. (1),  all the
integrals in Eq. (8) can be readily evaluated, since, according to
Eq. (7),  ϕ in each linear portion may  be in general expressed as
ϕ = const + �t, and therefore∫

dt

t0k
=

∫
(1 + b�)rdt

t0k0
= 1

t0k0

∫
[1 + b · const + b�t)]rdt

= (1 + b�)r+1

t0k0(r + 1)b�
+  const (9)

From this integral we readily obtain that

Ii =
∫ ti+tD

ti−1+tD

dt

t0k
= (1 + b�i)

r+1 − (1 + b�i−1)r+1

(r + 1)t0k0b�i
(10)

when i = 2, 3, . . .,  n, whereas I1 is given by

I1 =
∫ tD+t1

0

dt

t0k
= tD + t1

t0kin
(11)

where kin is the value of retention factor k when ϕ = ϕ1 = ϕin.
Thus an analytical solution of Eq. (4) with respect to tR is

feasible but this solution depends on whether the analyte is
eluted in the first isocratic portion, i.e. when tR < t1 + tD, or in the
last isocratic portion when tR > tn + tD or at an intermediate lin-
ear portion, say tp−1 + tD < tR < tp + tD. So we have to examine all
these cases:

) The analyte is eluted in the first isocratic portion. The condition
that indicates that the analyte is eluted under isocratic condi-
tions, i.e. before t1 + tD, is the validity of the following inequality

I1 = tD + t1

t0kin
≥ 1 (12)

Then from Eq. (4) we obtain

tR = t0(1 + kin) (13)

B) The analyte is eluted in the p-th linear portion, i.e. between
tp−1 and tp. When this happens, the following inequalities hold
simultaneously∫ tp−1+tD

0

dt

t0k
< 1 and

∫ tp+tD

0

dt

t0k
≥ 1 (14)

because∫ tR−t0

0

dt

t0k
=

∫ tp−1+tD

0

dt

t0k
+

∫ tR−t0

tp−1+tD

dt

t0k
= 1

∫ t +t
⇒
p−1 D

0

dt

t0k
< 1 (15)
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and∫ tp+tD

0

dt

t0k
=

∫ tR−t0

0

dt

t0k
+

∫ tp+tD

tR−t0

dt

t0k
= 1

+
∫ tp+tD

tR−t0

dt

t0k
> 1 (16)

Therefore, in order to determine the linear gradient in which
an analyte is eluted, we simply determine p for which both
inequalities (14) are valid. These inequalities may  be expressed
as

I1 + I2 + · · · + Ip−1 < 1 and I1 + I2 + · · · + Ip−1 + Ip ≥ 1 (17)

and allow the direct determination of p. Now in order to calculate
the retention time tR of the analyte, we use again Eq. (8),  which
yields∫ tR−t0

tp−1+tD

dt

t0k
= 1 − I1 − I2 − · · · − Ip−1 (18)

The integral of this expression is calculated again from Eq. (9).
Thus we readily obtain

tR = t0 + B1/(r+1) − 1 − b�p−1 + b�p(tp−1 + tD)
b�p

(19)

where

B = (r + 1)t0k0b�p(1 − I1 − I2 − · · · − Ip−1 + Jp) (20)

and

Jp = (1 + b�p−1)r+1

(r + 1)t0k0b�p
(21)

) The analyte is eluted in the last isocratic portion, i.e. when
ϕ = ϕmax. This happens when the following inequality is valid

tn+tD

0

dt

t0k
< 1 ⇒ I1 + I2 + · · · + In−1 + In < 1 (22)

or the retention time tR of the analyte we have again
tR−t0

0

dt

t0k
= 1 ⇒

∫ tn+tD

0

dt

t0k
+

∫ tR−t0

tn+tD

dt

t0k
= 1

⇒
∫ tR−t0

tn+tD

dt

t0k
= 1 − I1 − I2 − · · · − In (23)

owever now the last integral is calculated very easily because
 = k(ϕmax) = kmax is constant. Therefore,

R = t0 + tn + t0kmax(1 − I1 − I2 − · · · − In) (24)

.2. Simple logarithmic retention model expressed by Eq. (6)

If we work as in the previous section, we obtain that Eqs. (13)
nd (24) are still valid when the analyte is eluted in the first and
he last isocratic portions, respectively. When the analyte is eluted
n the p-th linear portion, i.e. between tp−1 + tD and tp + tD, then the
etention time is given by

R = t0 + {(a + 1)t0k0�p(1 − I1 − · · · − Ip−1 + Jp)}1/(a+1) − �p−1 + �p(tp−1 + tD)
�p

(25)

ere a and k0 are the adjustable parameters of the retention model,
q. (6),  and
i =
ϕa+1

i
− ϕa+1

i−1

(a + 1)t0k0�i
, i = 2, 3, . . . , n − 1 and Jp =

ϕa+1
p−1

(a + 1)t0k0�p

(26)
 1218 (2011) 5658– 5663

arising from∫
dt

t0k
=

∫
ϕadt

t0k0
= 1

t0k0

∫
(const + �t)]adt= ϕa+1

t0k0(a + 1)�
+  const

(27)

2.3. Linear retention model expressed by Eq. (5)

Again Eqs. (13) and (24) are valid when the analyte is eluted in
the first and the last isocratic portions, respectively, whereas the
retention time in the p-th linear portion may  be expressed as

tR = t0 + ln{(1 − I1 − · · · − Ip−1)/Jp + ea�p(tp−1+tD)}
a�p

(28)

where

Ii = eaϕi − eaϕi−1

t0k0a�i
, i=2, 3, . . . , n − 1 and Jp= eaϕp−1−a�p(tp−1+tD)

t0k0a�p

(29)

and a and k0 are the adjustable parameters of the retention model,
Eq. (5).  Note that Eq. (28) is a generalization of the correspond-
ing expression derived by Snyder et al. [20–23] for a single linear
portion.

2.4. Algorithms for fitting and optimization

The fitting algorithm adopted to determine the adjustable
parameters involved in the retention models, Eqs. (1), (5) or (6),  was
the R LM algorithm proposed in [8].  According to this algorithm,
an initial vector of the adjustable parameters is randomly selected
from the search domain and the Levenberg–Marquardt method,
using a rather small number of iterations, 500 in our applications,
determines the local minimum of the cost function [8],  which is
stored. Then a new vector of adjustable parameters is randomly
selected and the whole algorithm is repeated for a preset number
of iterations, at least 100 iterations. The minimum of the stored
local minima is determined and it presumably corresponds to the
global minimum of the cost function.

For the optimization algorithm, we adopted the following very
simple scheme. The algorithm using random numbers creates arbi-
trary multilinear gradient profiles (ϕin, ϕ2, ϕ3, . . .,  ϕn, t1, t2, . . .,  tn)
and at each gradient profile it calculates the retention times of all
solutes through the corresponding analytical expressions derived
in this paper. In addition, the algorithm calculates the minimum
value of the absolute difference ıt = |tR,i − tR,j| between pairs of adja-
cent solutes, i and j, and the elution time of the most distant solute,
tR,max. If ıt is greater than a preset value and tR,max is smaller than
the maximum gradient elution time also preset by the researcher,
then the vector (ϕin, ϕ2, . . .,  ϕn, t1, t2, . . .,  tn) along with the values
of ıt and tR,max are stored. This procedure lasts for a preset time
and then all stored data are shorted descending according to ıt.
The output is the first 100 (or any other preset number) of them
together with the predicted retention times of the solutes. Note
that the algorithm may  use a certain retention model for all solutes
or different retention models for each solute selected from Eqs. (1),
(5) and (6).  In the latter case the user defines through the input file
which of the analytical expressions for tR developed in the present
paper will be used for the estimation of the elution time of each
analyte. This algorithm scans about 1,000,000 points per min  and
for this reason it determines easily the optimum conditions at a
certain separation. In contrast, if we  use the approximate stepwise

method proposed in [6] for the determination of tR, the same algo-
rithm scans about 16,000 points per min  and for this reason it may
fail to determine optimum conditions when we use a reasonable
computational time (say 1 h).
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Table 1
Experimental retention data (in min) of solutes studied under different linear and multilinear gradient profiles.

No. of gradients

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ϕ1 = ϕin 0.050 0.025 0.010 0.010 0.010 0.050 0.045 0.043 0.026 0.025 0.025 0.010 0.025 0.023 0.020 0.020
ϕ2 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.150 0.093 0.085 0.093 0.079
ϕ3 – – – – – – – – – – – – 0.150 0.150 0.150 0.150
t1 (ϕin) 0 0 0 0 0 3.0 2.9 1.7 2.0 2.0 3.5 1.0 3.6 3.7 3.6 3.6
t2 (ϕ2) 20.0 10.0 5.0 10.0 20.0 13.0 3.7 4.0 8.4 7.0 7.8 3.5 3.7 4.9 3.7 4.9
t3 (ϕ3) – – – – – – – – – – – – 8.6 13.0 8.6 11.0

Solutes tR (min)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cyt 3.40 3.85 4.23 4.23 4.23 3.41 3.44 3.51 3.80 3.84 3.83 4.23 3.84 3.88 3.96 3.96
Ura  3.93 4.52 5.34 5.27 5.28 3.93 3.96 3.98 4.43 4.52 4.45 5.34 4.51 4.57 4.72 4.71
UA  3.75 4.52 5.73 5.73 5.73 3.77 3.85 3.98 4.43 4.52 4.35 5.97 4.51 4.64 4.90 4.89
Cyd  3.93 5.00 5.84 6.17 6.46 3.93 3.96 3.98 4.87 5.00 4.93 6.44 4.99 5.12 5.43 5.43
Hyp  4.38 5.76 6.18 6.73 7.29 4.39 4.55 4.69 5.81 6.00 5.87 6.62 5.99 6.16 6.57 6.56
Urd  4.46 6.00 6.30 6.97 7.74 4.46 4.67 4.83 6.25 6.49 6.34 6.70 6.47 6.67 7.22 7.22
Xan  4.61 6.12 6.37 7.03 7.74 4.62 4.83 5.00 6.44 6.68 6.51 6.70 6.66 6.87 7.39 7.38
Thy 5.73  7.02 6.95 7.82 8.81 5.81 6.08 6.28 7.74 7.81 8.11 7.10 8.26 8.49 8.55 8.92
Ino  5.73 7.39 6.95 8.24 9.98 5.81 6.37 6.69 8.38 8.29 9.34 7.10 8.53 9.34 8.55 9.16
Guo  5.99 7.61 7.07 8.43 10.24 6.21 6.78 6.91 8.59 8.44 9.53 7.10 8.53 9.45 8.55 9.37
Ade  6.47 7.81 7.35 8.61 10.36 6.75 7.19 7.12 8.65 8.56 9.53 7.30 8.67 9.49 8.75 9.62
Thd  8.13 9.08 7.97 9.81 12.47 9.03 8.09 7.71 9.78 9.44 10.47 7.63 9.20 10.27 9.26 10.48
Ado 9.45 9.89 8.27 10.53 14.01 10.44 8.18 7.95 10.36 9.86 10.88 7.74 9.51 10.82 9.56 11.03
TB  10.69 10.72 8.85 11.32 15.01 11.42 8.53 8.40 11.03 10.47 11.42 8.19 10.24 11.67 10.30 11.82
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In general, both Eqs. (1) and (6) exhibit a quite satisfactory fitting
performance to gradient data since the overall absolute average
percentage error between calculated and experimental retention

Table 2
Values of adjustable parameters of Eq. (6) and their standard deviations.

Solutes ln k0 a

Cyt −2.24 ± 0.10 0.40 ± 0.03
Ura  −2.38 ± 0.22 0.58 ± 0.06
UA  −3.38 ± 0.58 0.87 ± 0.16
Cyd  −3.63 ± 0.63 0.99 ± 0.18
Hyp −3.02 ± 0.45 0.91 ± 0.13
Urd  −3.28 ± 0.45 1.02 ± 0.13
Xan −3.02 ± 0.39 0.96 ± 0.11
Thy −2.30 ± 0.30 0.87 ± 0.09
Ino −3.94 ± 0.82 1.44 ± 0.27
Guo −3.63 ± 0.70 1.37 ± 0.23
Ade  −2.66 ± 0.39 1.09 ± 0.13
Thd −2.66 ± 0.21 1.23 ± 0.07
TP 13.65  12.40 9.77 12.86 17.66 13.62 9.29 

CF  19.10 15.32 12.24 15.63 22.21 17.19 11.67 

. Experimental

The liquid chromatography system consisted of a Shimadzu
C-20AD pump, a Shimadzu DGU-20A3 degasser, a model 7125
yringe loading sample injector fitted with a 20 �L loop, a
50 mm × 4.6 mm MZ-Analytical column (MZ-Aqua Perfect C18

 �m)  thermostatted at 30 ◦C by a CTO-10AS Shimadzu column
ven and a Shimadzu UV–visible spectrophotometric detector
Model SPD-10A) working at 260 nm.  The solutes were the fol-
owing 7 purines: uric acid (UA), hypoxanthine (Hyp), xanthine
Xan), adenine (Ade), theobromine (TB), theophylline (TP) and caf-
eine (CF); 3 pyrimidines: cytosine (Cyt), uracil (Ura) and thymine
Thy); and 6 nucleosides: cytidine (Cyd), uridine (Urd), inosine
Ino), guanosine (Guo) thymidine (Thd) and adenosine (Ado). A
tandard mixture of solutes at concentrations ranging from 2.7 to

 �g/mL was used in a phosphate buffer of pH 5.0 by making appro-
riate dilutions of stock standard solutions of individual analytes

n the same diluent except for UA and Xan, which were initially
issolved into a buffer of pH 9.1 because of their insolubility in pH
.0.

In order to investigate the validity of the analytical expressions
erived in Section 2 for the determination of tR obtained under
ultilinear gradient conditions, different chromatographic runs
ere performed with mobile phases consisting of 0.02 M aque-

us phosphate buffers (pH 5.0) modified with acetonitrile (MeCN).
he concentration of the organic modifier in mobile phases was
hanged by mixing automatically two 0.02 M aqueous phosphate
uffers (pH 5.0) containing ϕMeCN = 0.01 and 0.15, respectively.
he different gradient profiles used and the obtained experimen-
al retention data are shown in Table 1. Note that in this table all
radients, except for 16, have been selected empirically to cover an
xtended range of slopes and initial values of ϕMeCN. Gradient 16
as been selected by the optimization algorithm as the optimum

radient profile for a total elution time equal to 17 min.

The flow rate was 1.0 mL/min. The hold-up time and the
well time were estimated to be t0 = 2.56 and tD = 1.1 min,
espectively.
 12.27 11.49 12.35 9.01 11.52 13.40 11.58 13.35
 14.71 13.95 14.67 11.51 14.13 16.79 14.18 16.17

4. Results and discussion

The retention models expressed by Eqs. (1), (5) and (6),  through
their corresponding expressions of tR, were used for both fitting
and prediction in order to access their validity in the description
of the elution times of the analytes under study. The adjustable
parameters k0, r, b and a were determined by fitting the theoreti-
cal expressions of tR to the corresponding gradient data of the first
five simple linear gradient runs of Table 1. Indicative results are
presented in Tables 2 and 3. Table 2 shows the adjustable parame-
ters of Eq. (6),  whereas Table 3 depicts absolute percentage errors
between experimental and calculated retention data. In particu-
lar, the latter table shows in detail the fitting and prediction errors
according to Eq. (6) and the average absolute percentage errors due
to the retention models of Eqs. (1), (5) and (6) at each gradient run.
Ado −3.49 ± 0.14 1.63 ± 0.05
TB −3.13 ± 0.10 1.58 ± 0.04
TP  −3.53 ± 0.10 1.92 ± 0.04
CF  −3.79 ± 0.11 2.36 ± 0.05
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Table 3
Absolute percentage errors between experimental and calculated retention data based on the simple logarithmic retention model, Eq. (6), and average absolute percentage
errors  obtained from Eqs. (6),  (1) and (5) at each gradient run.

No. of gradients 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cyt 2.0 2.1 1.1 0.0 0.8 1.7 1.9 0.5 1.4 1.8 1.7 1.8 1.7 2.0 1.9 1.9
Ura 0.7  1.1 7.3 1.5 2.6 0.7 0.6 1.2 1.7 0.9 2.2 0.5 1.4 1.4 2.4 2.6
UA  0.3 0.3 11.3 4.7 2.6 0.9 0.1 1.9 4.1 3.9 7.5 7.0 4.7 4.1 5.1 5.4
Cyd  0.9 2.9 8.8 5.3 0.0 0.8 2.0 3.5 4.5 4.2 5.1 10.4 5.1 5.4 8.2 8.2
Hyp  1.9 5.1 6.8 4.6 1.5 2.3 2.9 2.0 3.3 1.8 4.9 7.8 4.1 4.4 6.9 7.1
Urd  2.5 5.3 6.5 4.5 1.9 3.5 3.6 2.8 1.5 0.9 5.4 7.4 4.9 5.3 2.8 5.6
Xan 2.5  5.3 5.9 3.9 0.8 3.5 3.7 2.7 0.4 2.2 5.1 6.3 4.2 4.4 0.9 4.3
Thy 1.8  2.7 3.0 1.2 1.4 3.9 4.5 1.0 2.5 3.9 1.8 3.4 5.2 1.3 5.6 3.7
Ino  3.4 2.4 2.8 1.0 1.2 8.6 6.3 4.7 3.1 4.1 3.7 5.0 5.0 4.6 3.3 0.6
Guo  4.2 2.1 1.9 0.6 1.2 8.1 2.4 5.2 3.1 3.6 3.8 3.0 3.2 3.9 1.4 0.9
Ade  3.5 1.1 1.4 0.2 0.7 6.3 0.8 4.3 1.7 2.7 2.6 1.7 2.2 2.7 0.9 1.7
Thd  2.6 0.2 0.9 0.9 0.2 0.1 3.6 1.7 0.6 0.8 1.0 1.4 2.3 1.5 3.3 1.3
Ado 1.3  0.2 0.3 0.8 0.1 1.4 1.5 1.3 0.2 0.1 0.0 1.0 3.5 2.9 4.0 2.1
TB  0.6 0.5 0.5 0.3 0.6 1.1 0.2 0.7 0.1 0.6 0.2 1.7 2.4 2.2 2.8 1.4
TP 0.4  1.1 0.7 0.5 0.7 0.7 1.4 0.7 0.6 0.9 0.3 1.0 1.0 1.3 0.9 0.4
CF  0.5 1.2 0.9 0.6 0.1 0.7 1.2 1.1 0.4 0.4 1.4 0.8 0.5 0.1 0.3 0.1

Eq.  (6) a 1.8 2.1 3.8 1.9 1.0 2.8 2.3 2.2 1.8 2.0 2.9 3.8 3.2 3.0 3.2 3.0

Eq.  (1) a 1.9 1.9 3.8 2.0 0.9 2.7 2.3 2.2 1.9 2.0 3.1 3.7 2.9 3.1 3.1 2.8
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three adjustable parameters, which, at least for the analytes under
study, are not all statistically significant. Finally, the optimization
procedure developed in this study should be a valuable alternative
Eq.  (5) a 3.9 1.9 5.6 3.2 2.7 6.4 3.

a Average absolute percentage errors between experimental and calculated reten

ata is only 2.1%. The overall predictive % error between calculated
nd experimental retention data increases to 2.7 for all gradient
uns tested (see columns 6–15 of Table 3 for the predictive % errors).
owever, we observed that Eq. (1) exhibits a rather peculiar behav-

or. Every time we rerun the fitting algorithm changing the ranges of
he adjustable parameters (search domain), the calculated b param-
ter always takes the maximum value of its range input, at least
or certain solutes. Additionally, if we examine the statistical sig-
ificance of the adjustable parameters of Eq. (1) from their t-ratio
alues, i.e. the absolute value of the ratio of each parameter to its
tandard deviation, it was  found that the fitting parameter b was
tatistically insignificant for all solutes, since its calculated t-ratio
arameters were less than 2 [24]. The above observations indicate
hat Eq. (1) could be replaced by the simple logarithm retention

odel, Eq. (6).  Indeed, the fitting of same set of solute retention
radient data to Eq. (6) gave statistical significant coefficients and
oreover the fitting and prediction performance of Eq. (6) is prac-

ically identical to that of Eq. (1) at least for the solutes under study.
Finally, we compared the fitting and prediction performance of

he logarithm retention models, Eqs. (1) and (6),  to that of the linear
odel, Eq. (5),  by using the same set of gradient data. Table 3 shows

hat the average percentage errors between experimental and cal-
ulated retention data by means of Eq. (5) at each gradient run are
ystematically greater than those obtained from the logarithmic
odels.
Consequently, the simple two-parameter logarithmic Eq. (6)

eems to be the proper choice for the retention model of the solutes
nder study and for this reason this model was used in the opti-
ization algorithm in order to determine the linear or multilinear

radient profile that is expected to lead to optimum separation of
he sample of interest, a difficultly separated set of analytes.

Note that the optimum gradient profiles determined by the opti-
ization algorithm described in Section 2.4 mainly depend on the

reset run time, i.e. total elution time. Moreover, the variation of
 should be restricted between two predefined values ϕmin and
max, which are 0.01 and 0.15 for our experimental system. Thus,

or example, the optimum gradient profile determined for a total
lution time equal to 17 min  was that denoted by No. 16 in Table 3.

his is a multilinear gradient consisting of an isocratic part at the
eginning and at the end of the elution as well as of two  linear ϕ
ariations with different slopes. Indeed, a perfect resolution of the
ample of interest is achieved within only 16.2 min  in the chro-
2.7 3.0 3.1 4.6 6.7 4.4 4.1 3.9 3.4

ata obtained at each gradient run.

matogram recorded under the above optimal gradient conditions,
see Fig. 2. Note that the same optimum is obtained when we  use
the retention model of Eq. (1).  In the same figure the superiority of
the optimal gradient profile is also illustrated, since it is clear that
two  critical couples of peaks, Ura–UA and Guo–Ade, were not able
to be separated in 16.8 min  by the No. 14 gradient, a gradient profile
similar to the optimal one.

To sum up, the simple logarithmic retention model expressed
by Eq. (6) was demonstrated to be the proper choice for gradi-
ent retention prediction and optimization through the analytical
expressions derived in this case for the solution of the fundamen-
tal equation of the multilinear gradient elution. This logarithmic
model is as simple as the linear retention model, Eq. (5),  but the
analytical solution of the fundamental equation of gradient elution
based on Eq. (6) gives better results in what concerns the predicted
gradient retention times of solutes. The logarithmic retention
model expressed by Eq. (1) exhibits precisely the same predic-
tion and optimization performance with that of Eq. (6) but it uses
Fig. 2. UV detected chromatograms of a 16-component mixture of purines, pyrim-
idines and nucleosides obtained by using the optimal gradient profile, No. 16 (solid
line) and the No. 14 gradient profile of Table 1 (dotted line). The elution order of
solutes is shown in the figure.
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